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Abstract We study small noise large deviation asymptotics for functionals of frac-
tional Brownian motions. A general sufficient condition for a LDP, formulated in
terms of weak convergence properties of certain controlled analogues of the original
functionals, is presented. As an application, we prove large deviation principles for
a class of stochastic differential equations with a multiplicative noise given as a
fractional Brownian motion 𝐵𝐻 with Hurst parameter 𝐻 > 1

2 . The methods pre-
sented have broader applicability than the model considered here, for example to
systems driven by more general Gaussian noises, and infinite dimensional stochastic
dynamical systems with fractional Gaussian noises.

1 Introduction

Theory of large deviations has a long history and several monographs and books
have been devoted to the subject [34, 12, 13, 17, 14, 15, 5]. One important topic in
this area is the study of asymptotic properties of dynamical systems perturbed by a
small noise. When the driving noise is a Brownian motion, such problems have been
extensively studied starting from the seminal work of Freidlin and Wentzell [17]
(cf. [1], [32], [34], [14]). The original approach for studying such problems relies
on techniques based on approximations, discretizations, and exponential probability
estimates. These approaches become hard to implement in complex settings, for
example for infinite dimensional models, or when the equation coefficients have poor
regularity, or when the noise models are non-standard. In recent years (cf. [3, 4, 7, 5])
an alternative approach based on stochastic control ideas and weak convergence
methods has emerged, for study of such small noise large deviation problems, that
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has now been applied for a diverse collection of problems (cf. references in [5]).
Most of these works consider systems driven by a Brownian noise and/or a Poisson
noise (see [8, 6, 5]).

The goal of the current work is to present an approach analogous to the one
developed for systems driven by Lévy noises in [4, 7, 8, 5], for dynamical systems
driven by a 𝑑-dimensional fractional Brownian motion (fBM) 𝐵𝐻 , where 𝐻 ∈ (0, 1)
is the Hurst paramter of the noise process. When𝐻 = 1/2, 𝐵𝐻 ≡ 𝐵 is a 𝑑-dimensional
standard Brownian motion and, as noted above, for this case the large deviation
properties of small noise stochastic dynamical systems have been well studied. Since
for𝐻 ≠ 1/2 the fractional Brownian motion 𝐵𝐻 is not a semimartingale, the classical
stochastic calculus methods are not readily applicable for the study of stochastic
integrals with respect to 𝐵𝐻 . Nevertheless, fractional Brownian motion has a nice
representation as a Volterra type integral with respect to a standard Brownian motion
(cf. [11]):

𝐵𝐻𝑡 =

∫ 1

0
𝐾𝐻 (𝑡, 𝑠)𝑑𝐵𝑠 , 𝑡 ∈ [0, 1], (1)

where 𝐵 is a standard Brownian motion and 𝐾𝐻 : [0, 1] × [0, 1] → R is a suitable
kernel (see (9)). Several authors have studied stochastic Volterra equations of the
form

𝑋𝑡 = 𝑥0 +
∫ 𝑡

0
𝐾 (𝑡, 𝑠)𝑏(𝑠, 𝑋𝑠)𝑑𝑠 +

∫ 𝑡

0
𝐾 (𝑡, 𝑠)𝜎(𝑠, 𝑋𝑠)𝑑𝐵𝑠 , (2)

where the above stochastic integral is the usual Itô integral and 𝐾 is some kernel.
Stochastic Volterra equations with regular kernels and driven by a finite-dimensional
Brownian motion were first investigated by Berger and Mizel [2] and since then such
equations have been widely studied under more general conditions, including settings
where 𝐾 is the fractional Brownian motion kernel 𝐾𝐻 (cf. [29], [28], [9], [10], [35]).

Large deviations for small noise stochastic Volterra equations have also been
studied in many works including, [27], [23], [38] and [33]. In particular, using Azen-
cott’s method (cf. [1]), Nualart and Rovira [27] proved a large deviation principle
(LDP) in the space of continuous functions and later Lakhel [23] improved this
result by establishing a LDP in a Besov-Orlicz space. As will be seen later, in many
important settings stochastic differential equations (SDE) driven by a fBM cannot
be represented as a stochastic Volterra equation. It is therefore of interest to develop
a general approach, analogous to the one developed in [3, 4] for Brownian motion
systems, for studying large deviation results for functionals of a fractional Brownian
motion, that cover such SDE models and which does not make an explicit use of the
representation (1). In this note we present such an approach that is applicable to a
broad range of stochastic synamical systems driven by fractional Brownian motions.
Furthermore, as will be clear from the proof methods, this approach can be extended
to other types of Gaussian noises and also for stochastic partial differential equations
with fractional Gaussian noises. These extensions will be considered in future works.

The starting point of our work is a nice extension of the variational representation
for functionals of Brownian motions given in [3, 4] to the general setting of an
abstract Wiener space that was established in [39]. By explicitly identifying the
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abstract Wiener space and related constructions for a fractional Brownian motion
(e.g. monotonic resolution of the identity operator on the Cameron-Martin space, a
filtration on the associated abstract Wiener space, the Skorohod integral) we apply
[39, Theorem 3.2] to give a convenient representation for functionals of a fractional
Brownian motion that is analogous to Brownian motion representations in [3, 4] (see
Proposition 2). Next, by adapting ideas from [3, 4], this representation is used to
give a general sufficient condition for a LDP to hold for functionals of a fractional
Brownian motion. This condition is analogous to sufficient conditions given for
Brownioan noise driven systems in [4, 7] and for systems with a Poisson noise in
[8] which have found broad applicability (see [5] and references therein). With this
sufficient condition, the proofs of LDP for stochastic dynamical systems driven by
fBM become very similar to proofs for SDE driven by BM. Once again the key step is
to verify certain weak convergence properties of controlled analogues of the original
system. The control processes this time take a different form and are given as suitable
random non-anticipative elements of the Cameron-Martin space associated with the
fractional Brownian motion (see the definition of classes A and A𝑏 in Section 3.1).
The verification of this sufficient condition is usually the most technical part of the
proof of a large deviation principle and depends on model specific properties.

To illustrate the applicability of this method we study large deviation asymp-
totics for singularly perturbed ordinary differential equations with a multiplicative
fractional Brownian noise. Specifically, we consider multidimensional stochastic
differential equation (SDE) of the form

𝑋𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑠, 𝑋𝑠)𝑑𝑠 +

√
Y

∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑑𝐵𝐻𝑠 , (3)

or equivalently

𝑋 𝑖𝑡 = 𝑥
𝑖
0 +

∫ 𝑡

0
𝑏𝑖 (𝑠, 𝑋𝑠)𝑑𝑠 +

√
Y

𝑑∑︁
𝑗=1

∫ 𝑡

0
𝜎𝑖, 𝑗 (𝑠, 𝑋𝑠)𝑑𝐵𝐻, 𝑗𝑠 , 𝑖 = 1, . . . , 𝑚,

where 𝑥0 ∈ R𝑚, Y ∈ (0,∞) is a small paramater, 𝑏 : [0, 1] × R𝑚 → R𝑚, 𝜎 :
[0, 1] × R𝑚 → R𝑚×𝑑 are suitable coefficients, 𝐵𝐻 is a 𝑑-dimensional fractional
Brownian motion with Hurst parameter 𝐻 ∈ ( 1

2 , 1), and the integral with respect to
𝐵𝐻 is a pathwise Riemann-Stieltjes integral in the sense of [36]. The existence and
uniqueness, and the properties of the solution to the above SDE have been studied by
many authors (cf. [25], [24], [21], [22], [30], [26], [20]). This SDE cannot in general
be written as a stochastic Volterra equation of the form (2). Writing the kernel 𝐾𝐻
as 𝐾𝐻 (𝑡, 𝑠) = 𝑘𝐻 (𝑡, 𝑠)1[0,𝑡 ] (𝑠) where 𝑘𝐻 is as in (10) and using the representation
(1), one can formally write the pathwise integral

∫ 𝑡
0 𝜎(𝑠, 𝑋𝑠)𝑑𝐵

𝐻
𝑠 in (3) as
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0
𝜎(𝑠, 𝑋𝑠)𝑑𝐵𝐻𝑠 =

∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑘𝐻 (𝑡, 𝑠)𝑑𝐵𝑠

+
∫ 𝑡

0

∫ 𝑡

𝑠

[𝜎(𝑢, 𝑋𝑢) − 𝜎(𝑠, 𝑋𝑠)]𝜕𝑢𝑘𝐻 (𝑢, 𝑠)𝑑𝑢 𝛿𝐵𝑠

+
∫ 𝑡

0

∫ 𝑢

0
𝐷𝐵𝑠 𝜎(𝑢, 𝑋𝑢)𝜕𝑢𝑘𝐻 (𝑢, 𝑠)𝑑𝑠 𝑑𝑢

=

∫ 𝑡

0

∫ 𝑡

𝑠

𝜎(𝑢, 𝑋𝑢)𝜕𝑢𝑘𝐻 (𝑢, 𝑠)𝛿𝐵𝑠

+
∫ 𝑡

0

∫ 𝑢

0
𝐷𝐵𝑠 𝜎(𝑢, 𝑋𝑢)𝜕𝑢𝑘𝐻 (𝑢, 𝑠)𝑑𝑠 𝑑𝑢,

where 𝑑𝐵 and 𝛿𝐵 denote the Itô integral and the Skorohod integral respectively
with respect to the Brownian motion 𝐵, and 𝐷𝐵 is the Malliavin derivative with
respect to 𝐵. In particular, even though 𝐵𝐻 has a simple representation in terms of a
standard Brownian motion 𝐵 and the fBm kernel 𝐾𝐻 (as given in (1)) the stochastic
integral on the left side of the above display does not admit a similar tractable
representation. Thus, one cannot directly use the methods of [27, 23, 38, 33] to
obtain a large deviation principle for the solution of (3). Our proof proceeds by
verifying the general sufficient condition in terms of weak convergence properties
of certain controlled analogues of this SDE which is presented in Theorem 1. The
verification of these weak convergence properties uses various results for the SDE
(3) that have been developed in [26] and a key estimate on the Hölder norms of the
solutions in terms of those of the driving paths (see Proposition 3).

The paper is organized as follows. Section 2 introduces some notation and back-
ground results. Section 3 gives our main assumptions and states the main results.
Proofs of these results are provided in Section 4.

2 Notation and Preliminaries

In this section we recall the definition of a fractional Brownian motion and introduce
some related terminology and notation.

2.1 Fractional integrals and derivatives

Let 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏. Denote by 𝐿 𝑝 ( [𝑎, 𝑏]), 𝑝 ≥ 1, the usual space of Lebesgue
measurable functions 𝑓 : [𝑎, 𝑏] → R for which ∥ 𝑓 ∥𝐿𝑝 < ∞, where

∥ 𝑓 ∥𝐿𝑝 =


(∫ 𝑏
𝑎

| 𝑓 (𝑡) |𝑝𝑑𝑡
)1/𝑝

, if 1 ≤ 𝑝 < ∞
ess sup{| 𝑓 (𝑡) | : 𝑡 ∈ [𝑎, 𝑏]}, if 𝑝 = ∞.
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Let 𝑓 ∈ 𝐿1 ( [𝑎, 𝑏]) and 𝛼 > 0. The left-sided and right-sided fractional Riemann-
Liouville integrals of 𝑓 of order 𝛼 are defined for almost all 𝑡 ∈ (𝑎, 𝑏) by

𝐼𝛼𝑎+ 𝑓 (𝑡) =
1

Γ (𝛼)

∫ 𝑡

𝑎

(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) 𝑑𝑠

and

𝐼𝛼𝑏− 𝑓 (𝑡) =
(−1)−𝛼

Γ (𝛼)

∫ 𝑏

𝑡

(𝑠 − 𝑡)𝛼−1 𝑓 (𝑠) 𝑑𝑠,

respectively, where (−1)−𝛼 = 𝑒−𝑖 𝜋𝛼 and Γ (𝛼) =
∫ ∞

0 𝑟𝛼−1𝑒−𝑟𝑑𝑟 is the Euler gamma
function. Let 𝐼𝛼𝑎+ (𝐿 𝑝 ( [𝑎, 𝑏])) (resp. 𝐼𝛼

𝑏− (𝐿
𝑝 ( [𝑎, 𝑏]))) be the image of 𝐿 𝑝 ( [𝑎, 𝑏]) un-

der the operator 𝐼𝛼𝑎+ (resp. 𝐼𝛼
𝑏−). If 𝑓 ∈ 𝐼𝛼𝑎+ (𝐿 𝑝 ( [𝑎, 𝑏])) (resp. 𝑓 ∈ 𝐼𝛼

𝑏− (𝐿 𝑝 ( [𝑎, 𝑏])))
and 0 < 𝛼 < 1 then the Weyl derivatives are defined as

𝐷𝛼𝑎+ 𝑓 (𝑡) =
1

Γ (1 − 𝛼)

(
𝑓 (𝑡)

(𝑡 − 𝑎)𝛼 + 𝛼
∫ 𝑡

𝑎

𝑓 (𝑡) − 𝑓 (𝑠)
(𝑡 − 𝑠)𝛼+1 𝑑𝑠

)
1(𝑎,𝑏) (𝑡) (4)

and

𝐷𝛼𝑏− 𝑓 (𝑡) =
(−1)𝛼

Γ (1 − 𝛼)

(
𝑓 (𝑡)

(𝑏 − 𝑡)𝛼 + 𝛼
∫ 𝑏

𝑡

𝑓 (𝑡) − 𝑓 (𝑠)
(𝑠 − 𝑡)𝛼+1 𝑑𝑠

)
1(𝑎,𝑏) (𝑡) (5)

for almost all 𝑡 ∈ (𝑎, 𝑏) (the convergence of the integrals at the singularity 𝑠 = 𝑡

holds pointwise for almost all 𝑡 ∈ (𝑎, 𝑏) if 𝑝 = 1 and in 𝐿 𝑝 if 1 < 𝑝 < ∞).

Denote by 𝐶 ( [𝑎, 𝑏] : R𝑑) the space of R𝑑-valued continuous functions on the
interval [𝑎, 𝑏]. Note that 𝐶 ( [𝑎, 𝑏] : R𝑑) is a separable Banach space equipped with
the following norm

∥ 𝑓 ∥𝑎,𝑏,∞ = sup
𝑎≤𝑟≤𝑏

| 𝑓 (𝑟) |.

For any _ ∈ (0, 1), we denote by 𝐶_ ( [𝑎, 𝑏] : R𝑑) the space of R𝑑-valued _-Hölder
continuous functions on the interval [𝑎, 𝑏]. We will make use of the notation

∥ 𝑓 ∥𝑎,𝑏,_ = sup
𝑎≤ \<𝑟≤𝑏

| 𝑓 (𝑟) − 𝑓 (\) |
|𝑟 − \ |_ ,

if 𝑓 ∈ 𝐶_ ( [𝑎, 𝑏] : R𝑑). In the case of 𝑑 = 1, we abbreviate 𝐶_ ( [𝑎, 𝑏] : R) as
𝐶_ ( [𝑎, 𝑏]).

Suppose that 𝑓 ∈ 𝐶_ ( [𝑎, 𝑏]) and 𝑔 ∈ 𝐶` ( [𝑎, 𝑏]) with _ + ` > 1. Then, from
the classical paper by Young [36], the Riemann-Stieltjes integral

∫ 𝑏
𝑎
𝑓 𝑑𝑔 exists. The

following proposition can be regarded as a fractional integration by parts formula,
and provides an explicit expression for the integral

∫ 𝑏
𝑎
𝑓 𝑑𝑔 in terms of fractional

derivatives (cf. [37]).

Proposition 1 Suppose that 𝑓 ∈ 𝐶_ ( [𝑎, 𝑏]) and 𝑔 ∈ 𝐶` ( [𝑎, 𝑏]) with _ + ` > 1. Let
0 < 𝛼 < 1, _ > 𝛼 and ` > 1 − 𝛼. Then the Riemann-Stieltjes integral

∫ 𝑏
𝑎
𝑓 𝑑𝑔 exists
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and it can be expressed as∫ 𝑏

𝑎

𝑓 𝑑𝑔 = (−1)𝛼
∫ 𝑏

𝑎

𝐷𝛼𝑎+ 𝑓 (𝑡) 𝐷1−𝛼
𝑏− 𝑔𝑏− (𝑡) 𝑑𝑡, (6)

where 𝑔𝑏− (𝑡) = 𝑔 (𝑡) − 𝑔 (𝑏).

When we consider the interval [𝑎, 𝑏] = [0, 1], we will use the following simplified
notations

∥ 𝑓 ∥∞ = ∥ 𝑓 ∥0,1,∞, ∥ 𝑓 ∥_ = ∥ 𝑓 ∥0,1,_

for 𝑓 in 𝐶 ( [0, 1] : R𝑑) and 𝐶_ ( [0, 1] : R𝑑), respectively.
For 0 < 𝛼 < 1, let 𝑊 𝛼,∞

0 ( [0, 1] : R𝑑) be the space of R𝑑-valued measurable
functions 𝑓 : [0, 1] → R𝑑 such that

∥ 𝑓 ∥𝛼,∞ = sup
0≤𝑡≤1

{
| 𝑓 (𝑡) | +

∫ 𝑡

0

| 𝑓 (𝑡) − 𝑓 (𝑠) |
(𝑡 − 𝑠)𝛼+1 𝑑𝑠

}
< ∞.

It is easy to see that

𝐶𝛼+Y ( [0, 1] : R𝑑) ⊆ 𝑊 𝛼,∞
0 ( [0, 1] : R𝑑)

for any Y > 0. On the other hand, by the Garsia-Rademich-Rumsey inequality (see
[18]), it follows that

𝑊
𝛼,∞
0 ( [0, 1] : R𝑑) ⊆ 𝐶𝛼−Y ( [0, 1] : R𝑑)

for any 0 < Y < 𝛼.

2.2 Fractional Brownian motion

We now recall the definition of a fractional Brownian motion.

Definition 1 For 𝐻 ∈ (0, 1), a 𝑑-dimensional fractional Brownian motion (fBm for
short) 𝐵𝐻 = {𝐵𝐻𝑡 : 𝑡 ∈ [0, 1]} with Hurst parameter 𝐻 defined on a complete
probability space (Ω, F , P) is a centered Gaussian process whose covariance matrix
𝑅𝐻 = (𝑅𝑖, 𝑗

𝐻
)1≤𝑖, 𝑗≤𝑑 is given by

𝑅
𝑖, 𝑗

𝐻
(𝑠, 𝑡) = E(𝐵𝐻,𝑖𝑠 𝐵

𝐻, 𝑗
𝑡 ) = 1

2
(𝑠2𝐻 + 𝑡2𝐻 − |𝑡 − 𝑠 |2𝐻 )𝛿𝑖, 𝑗 , 𝑠, 𝑡 ∈ [0, 1], (7)

where 𝛿 is the Kronecker delta function.

For 𝐻 = 1
2 , the process 𝐵 1

2 is a 𝑑-dimensional standard Brownian motion. For
𝐻 ≠ 1

2 , the fBm 𝐵𝐻 is not a semimartingale. It follows from (7) that
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E( |𝐵𝐻𝑡 − 𝐵𝐻𝑠 |2) = 𝑑 |𝑡 − 𝑠 |2𝐻 , 𝑡, 𝑠 ∈ [0, 1] .

From the above property along with Kolmogorov’s continuity criterion it follows
that the sample paths of 𝐵𝐻 are a.s. Hölder continuous of order 𝛽 for all 𝛽 < 𝐻.

In the sequel we consider the canonical probability space (Ω, F , P), where Ω =

𝐶0 ( [0, 1] : R𝑑) is the space of continuous functions null at time 0,F = B(𝐶0 ( [0, 1] :
R𝑑)) is the Borel 𝜎-algebra and P is the unique 𝑑-dimensional probability measure
such that the canonical process 𝐵𝐻 = {𝐵𝐻𝑡 (𝜔) = 𝜔(𝑡) : 𝑡 ∈ [0, 1]} is a 𝑑-
dimensional fractional Brownian motion with Hurst parameter 𝐻. Consider the
canonical filtration given by {F 𝐻

𝑡 : 𝑡 ∈ [0, 1]}, where F 𝐻
𝑡 = 𝜎{𝐵𝐻𝑠 : 0 ≤ 𝑠 ≤

𝑡} ∨ N and N is the set of the P-negligible events.
Let 𝐹 (𝑎, 𝑏, 𝑐; 𝑧) denote the Gauss hypergeometric function defined for any

𝑎, 𝑏, 𝑐, 𝑧 ∈ C with |𝑧 | < 1 and 𝑐 ≠ 0,−1,−2, . . . by

𝐹 (𝑎, 𝑏, 𝑐; 𝑧) =
∞∑︁
𝑘=0

(𝑎)𝑘 (𝑏)𝑘
(𝑐)𝑘

𝑧𝑘 ,

where (𝑎)0 = 1 and (𝑎)𝑘 = 𝑎(𝑎 + 1) . . . (𝑎 + 𝑘 − 1) is the Pochhammer symbol.
Let 𝐵 = {𝐵𝑡 = (𝐵1

𝑡 , . . . , 𝐵
𝑑
𝑡 ), 𝑡 ∈ [0, 1]} be a standard 𝑑-dimensional Brownian

motion. Then from [11] we have that the process

𝐵𝐻𝑡 =

∫ 1

0
𝐾𝐻 (𝑡, 𝑠)𝑑𝐵𝑠 , 𝑡 ∈ [0, 1] (8)

defines a fBm with Hurst parameter 𝐻, where

𝐾𝐻 (𝑡, 𝑠) = 𝑘𝐻 (𝑡, 𝑠)1[0,𝑡 ] (𝑠), (9)

for 0 ≤ 𝑠 ≤ 𝑡

𝑘𝐻 (𝑡, 𝑠) =
𝑐𝐻

Γ

(
𝐻 + 1

2

) (𝑡 − 𝑠)𝐻− 1
2 𝐹

(
𝐻 − 1

2
,

1
2
− 𝐻, 𝐻 + 1

2
; 1 − 𝑡

𝑠

)
, (10)

𝑐𝐻 =

[
2𝐻Γ( 3

2 −𝐻)Γ(𝐻+ 1
2 )

Γ (2−2𝐻 )

]1/2
, and Γ(·) as before is the gamma function.

The next lemma (cf. Theorem 2.1 in [11] and (10.22) in [31]) will play an
important role in the construction of the Cameron-Martin space in the abstract
Wiener space associated with a fBm.

Lemma 1 For 𝐻 ∈ (0, 1), consider the integral transform
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(𝐾𝐻 𝑓 ) (𝑡) =
∫ 1

0
𝐾𝐻 (𝑡, 𝑠) 𝑓 (𝑠)𝑑𝑠

=
𝑐𝐻

Γ(𝐻 + 1
2 )

∫ 1

0
(𝑡 − 𝑠)𝐻− 1

2 𝐹

(
1
2
− 𝐻, 𝐻 − 1

2
, 𝐻 + 1

2
; 1 − 𝑡

𝑠

)
𝑓 (𝑠)𝑑𝑠.(11)

(12)

Then 𝐾𝐻 is an isomorphism from 𝐿2 ( [0, 1] : R𝑑) onto 𝐼𝐻+ 1
2

0+ (𝐿2 ( [0, 1] : R𝑑)) and

𝐾𝐻 𝑓 (𝑡) = 𝑐𝐻 𝐼1
0+

(
𝜓

(
𝐼
𝐻− 1

2
0+ (𝜓−1 𝑓 )

))
(𝑡), if 𝐻 ≥ 1

2
, 𝑡 ∈ [0, 1] (13)

𝐾𝐻 𝑓 (𝑡) = 𝑐𝐻 𝐼2𝐻
0+

(
𝜓−1

(
𝐼

1
2 −𝐻
0+ (𝜓 𝑓 )

))
(𝑡), if 𝐻 ≤ 1

2
, 𝑡 ∈ [0, 1] . (14)

where 𝜓(𝑢) = 𝑢𝐻− 1
2 for 𝑢 ∈ [0, 1].

Remark 1 For any 𝑎 < 𝑏, if 𝛼 > 1
𝑝

, then from Theorem 3.6 in [31] we have

𝐼𝛼𝑎+ (𝐿 𝑝 ( [𝑎, 𝑏])) ∪ 𝐼𝛼𝑏− (𝐿 𝑝 ( [𝑎, 𝑏])) ⊂ 𝐶𝛼−
1
𝑝 ( [𝑎, 𝑏]) .

In particular, we have 𝐼
𝐻+ 1

2
0+ (𝐿2 ( [0, 1] : R𝑑)) ⊂ 𝐶𝐻 ( [0, 1] : R𝑑). Note that

(𝐾𝐻 𝑓 ) (0) = 0 for all 𝑓 ∈ 𝐿2 ( [0, 1] : R𝑑). Thus 𝐾𝐻 maps 𝐿2 ( [0, 1] : R𝑑) into
𝐶0 ( [0, 1] : R𝑑) and for 𝑓1, 𝑓2 ∈ 𝐿2 ( [0, 1] : R𝑑), 𝑓1 = 𝑓2 a.e. if and only if
𝐾𝐻 𝑓1 = 𝐾𝐻 𝑓2.

Define H𝐻 = {(𝐾𝐻 ¤ℎ1, . . . , 𝐾𝐻 ¤ℎ𝑑) : ¤ℎ = ( ¤ℎ1, . . . , ¤ℎ𝑑) ∈ 𝐿2 ( [0, 1] : R𝑑)}, that
is, any ℎ ∈ H𝐻 can be represented as

ℎ(𝑡) = (𝐾𝐻 ¤ℎ) (𝑡) =
∫ 1

0
𝐾𝐻 (𝑡, 𝑠) ¤ℎ(𝑠)𝑑𝑠,

for some ¤ℎ ∈ 𝐿2 ( [0, 1] : R𝑑). Define a scalar inner product on H𝐻 by

⟨ℎ, 𝑔⟩H𝐻
= ⟨𝐾𝐻 ¤ℎ, 𝐾𝐻 ¤𝑔⟩H𝐻

= ⟨ ¤ℎ, ¤𝑔⟩𝐿2 .

Then H𝐻 is a separable Hilbert space with the inner product ⟨·, ·⟩H𝐻
. From

Remark 1, we see that H𝐻 is a subset of Ω = 𝐶0 ( [0, 1] : R𝑑).

3 Results

We now present the main results of this work. The proofs will be provided in Section
4.
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3.1 A variational representation for functionals of fBm

For 0 < 𝑁 < ∞, let 𝑆𝑁 = {𝑣 ∈ H𝐻 : 1
2 ∥𝑣∥

2
H𝐻

≤ 𝑁}. Equipped with the weak
topology on H𝐻 , 𝑆𝑁 can be metrized as a compact Polish space. Let A denote the
class of all H𝐻 -valued random variables 𝑣 in 𝐿2 ((Ω, F , P) : H𝐻 ) such that 𝑣(𝑡) is
{F 𝐻
𝑡 }-measurable for every 𝑡 ∈ [0, 1]. The set of all a.s. bounded elements in A is

denoted by A𝑏, that is,

A𝑏 = {𝑣 ∈ A : ∥𝑣(𝜔)∥H𝐻
≤ 𝑁 P-a.s. for some 0 < 𝑁 < ∞}.

The following variational representation is obtained by making use of [39, Theo-
rem 3.2]. The proof is provided in Section 4.

Proposition 2 Let 𝑓 be a bounded Borel measurable function on Ω. Then we have

− logE(𝑒− 𝑓 (𝜔) ) = inf
𝑣∈A
E

(
𝑓 (𝜔 + 𝑣) + 1

2
∥𝑣∥2

H𝐻

)
= inf
𝑣∈A𝑏

E

(
𝑓 (𝜔 + 𝑣) + 1

2
∥𝑣∥2

H𝐻

)
.

3.2 A general large deviation principle

We begin by recalling the definition of a large deviation principle. Let E be a Polish
space (a complete separable metric space) and let {𝑋 Y : Y ∈ (0, 1)} be a collection
of E-valued random variables.

Definition 2 (a) A function 𝐼 : E → [0,∞] is called a rate function on E, if for
each 𝑀 < ∞ the level set {𝑥 ∈ E : 𝐼 (𝑥) ≤ 𝑀} is a compact subset of E. For
𝐴 ∈ B(E), we define 𝐼 (𝐴) = inf𝑥∈𝐴 𝐼 (𝑥).

(b) Let 𝐼 be a rate function on E. A collection {𝑋 Y : Y ∈ (0, 1)} of E-valued random
variables is said to satisfy a large deviation principle in E, as Y → 0, with rate
function 𝐼 if the following two conditions hold:

(i) Large deviation upper bound. For each open set 𝐺 in E,

lim sup
Y→0

−Y logP(𝑋 Y ∈ 𝐺) ≤ 𝐼 (𝐺).

(ii) Large deviation lower bound. For each closed set 𝐹 in E,

lim inf
Y→0

−Y logP(𝑋 Y ∈ 𝐹) ≥ 𝐼 (𝐹).

For 0 < Y < 1 let GY : Ω = 𝐶0 ( [0, 1] : R𝑑) → E be a measurable map. We will
now give a sufficient condition on the maps GY for a LDP to hold for the collection
of E-valued random variables
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𝑋 Y (𝜔) = GY (
√
Y𝜔), 𝜔 ∈ Ω. (15)

Recall that 𝑆𝑁 is a compact metric space that is equipped with the weak topology
inherited from H𝐻 . Also recall the canonical filtration {F 𝐻

𝑡 } on (Ω, F , P) and the
classes A,A𝑏.

Assumption There exists a measurable map G0 : H𝐻 → E such that the following
conditions hold.

(i) Consider 0 < 𝑁 < ∞ and a family of 𝑆𝑁 -valued random elements {𝑣Y} ⊂ A𝑏

on (Ω, F , P) such that 𝑣Y converges in distribution to 𝑣. Then GY (
√
Y𝜔 + 𝑣Y)

converges to G0 (𝑣) in distribution.
(ii) For every 0 < 𝑁 < ∞, the set

Γ𝑁 = {G0 (𝑣) : 𝑣 ∈ 𝑆𝑁 }

is a compact subset of E. □

For 𝑥 ∈ E, define

𝐼 (𝑥) = inf
{𝑣∈H𝐻 : 𝑥=G0 (𝑣) }

{
1
2
∥𝑣∥2

H𝐻

}
(16)

whenever {𝑣 ∈ H𝐻 : 𝑥 = G0 (𝑣)} ≠ ∅, and 𝐼 (𝑥) = ∞ otherwise.

The following theorem gives a LDP under Assumption 1. Proof is given in Section
4.

Theorem 1 Let 𝑋 Y be as defined in (15). Suppose that {GY} satisfies Assumption
1. Then the family {𝑋 Y : Y ∈ (0, 1)} satisfies a large deviation principle in E, as
Y → 0, with rate function 𝐼 defined in (16).

3.3 SDE with a multiplicative fractional noise

For Y > 0, consider the following stochastic differential equation

𝑋 Y𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑠, 𝑋 Y𝑠 )𝑑𝑠 +

√
Y

∫ 𝑡

0
𝜎(𝑠, 𝑋 Y𝑠 )𝑑𝐵𝐻𝑠 , 𝑡 ∈ [0, 1] . (17)

where 𝐵𝐻 is a 𝑑-dimensional fBm with 𝐻 > 1/2. For wellposedness of the above
equation we introduce the following condition on the coefficients 𝑏 and 𝜎. For a
matrix 𝐴 = (𝑎𝑖, 𝑗 )𝑚×𝑑 and a vector 𝑦 = (𝑦𝑖)𝑚×1, denote |𝐴|2 =

∑
𝑖, 𝑗 |𝑎𝑖, 𝑗 |2 and

|𝑦 |2 =
∑
𝑖 |𝑦𝑖 |2.

Assumption (i) The function𝜎 : [0, 1]×R𝑚 → R𝑚×𝑑 is differentiable in the space
variable 𝑥 ∈ R𝑚, and there exist constants 𝑀 > 0, 1−𝐻 < _ ≤ 1, 1

𝐻
−1 < 𝛾 ≤ 1,

and for every 𝑁 > 0 there exists 𝑀𝑁 > 0, such that the following hold:
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|𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦) | ≤ 𝑀 |𝑥 − 𝑦 |, for all (𝑡, 𝑥) ∈ [0, 1] × R𝑚,

|𝜕𝑥𝑖𝜎(𝑡, 𝑥)−𝜕𝑦𝑖𝜎(𝑡, 𝑦) | ≤ 𝑀𝑁 |𝑥−𝑦 |𝛾 , for all 𝑡 ∈ [0, 1], 𝑥, 𝑦 ∈ R𝑚, |𝑥 |∨|𝑦 | ≤ 𝑁,

|𝜎(𝑡, 𝑥)−𝜎(𝑠, 𝑥) |+|𝜕𝑥𝑖𝜎(𝑡, 𝑥)−𝜕𝑥𝑖𝜎(𝑠, 𝑥) | ≤ 𝑀 |𝑡−𝑠 |_, for all 𝑥 ∈ R𝑚, 𝑡, 𝑠 ∈ [0, 1],

for each 𝑖 = 1, . . . , 𝑚.
(ii) There exists 𝐿 > 0 such that the following properties are satisfied:

|𝑏(𝑡, 𝑥)−𝑏(𝑡, 𝑦) | ≤ 𝐿 |𝑥−𝑦 |, |𝑏(𝑡, 𝑥) | ≤ 𝐿 (1+|𝑥 |) for all 𝑥, 𝑦 ∈ R𝑚 and 𝑡 ∈ [0, 1] .

Remark 2 From Assumption 2(i) it follows that there exists a 𝐾 > 0 such that

|𝜎(𝑡, 𝑥) | ≤ 𝐾 (1 + |𝑥 |), for all (𝑡, 𝑥) ∈ [0, 1] × R𝑚. (18)

Let 𝑔 : [0, 1] → R𝑑 be such that for any 0 < Y < 𝐻, 𝑔 ∈ 𝐶𝐻−Y ( [0, 1] : R𝑑).
Consider the deterministic equation on R𝑚

𝑥𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑠, 𝑥𝑠)𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑥𝑠)𝑑𝑔𝑠 , (19)

where 𝑥0 ∈ R𝑚 and the last integral is interpreted as a Riemann-Stieltjes integral.
The wellposedness in part (a) of the next proposition is taken from [26, Theorem

5.1]. The estimate given in part (b) of the proposition will play an important role in
the analysis and will be established in Section 4.3.

Proposition 3 Suppose that the coefficients 𝑏 and 𝜎 satisfy Assumption 2. Then the
following hold.

(a)Equation (19) has a unique solution 𝑥 ∈ 𝑊 𝛼,∞
0 ( [0, 1] : R𝑚) for any 𝛼 ∈ (1 −

𝐻,min{ 1
2 , _,

𝛾

1+𝛾 }). Moreover, the solution is (1 − 𝛼)-Hölder continuous.
(b)For any 𝛼 ∈ (1−𝐻,min{ 1

2 , _,
𝛾

1+𝛾 }) and any 0 < 𝛿 < 𝛼 − (1−𝐻), the following
estimates hold:

∥𝑥∥∞ ≤ 𝐶1 (1 + |𝑥0 |) exp{𝐶2∥𝑔∥^1−𝛼+𝛿}, (20)

∥𝑥∥1−𝛼 ≤ 𝐶3 (1 + |𝑥0 |) (1 + ∥𝑔∥^1−𝛼+𝛿) (1 + ∥𝑔∥1−𝛼+𝛿) (1 + exp{𝐶2∥𝑔∥^1−𝛼+𝛿}),(21)

where ^ = 1
1−𝛼 and the constants 𝐶1, 𝐶2 and 𝐶3 depend on 𝛼, 𝛿 and all the

constants appearing in Assumption 2.

Remark 3 As observed above Proposition 1, for 𝑓 ∈ 𝐶`1 ( [𝑎, 𝑏] : R) and ℎ ∈
𝐶`2 ( [𝑎, 𝑏] : R) with `1 + `2 > 1, the Riemann-Stieltjes integral

∫ 𝑏
𝑎
𝑓𝑠𝑑ℎ𝑠 exists.

From Assumption 2 and the observation that 𝑊 𝛼,∞
0 ( [0, 1] : R𝑚) ⊆ 𝐶𝛼−Y ( [0, 1] :

R𝑚) for any 0 < Y < 𝛼, it follows that if for some 𝛼 > 1−𝐻, 𝑥 ∈ 𝑊 𝛼,∞
0 ( [0, 1] : R𝑚)

then 𝑠 ↦→ 𝜎(𝑠, 𝑥(𝑠)) ∈ 𝐶 𝛿 ( [0, 1] : R𝑚) for some 𝛿 > 1 − 𝐻. Thus, from properties
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of 𝑔 it follows that the integral
∫ 𝑡

0 𝜎(𝑠, 𝑥𝑠)𝑑𝑔𝑠 is well defined as a Riemann-Stieltjes
integral.

In Lemma 2 it will be seen that,H𝐻 ⊂ 𝐶𝐻 ( [0, 1] : R𝑑) and thus from Proposition
3, under Assumption 2, equation (19) with 𝑔 replaced by 𝑣 has a unique solution.
For 𝑓 ∈ 𝐶 ( [0, 1] : R𝑚), define

C 𝑓 �
{
𝑣 ∈ H𝐻 : 𝑓𝑡 = 𝑥0 +

∫ 𝑡

0
𝑏(𝑠, 𝑓𝑠)𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑓𝑠)𝑑𝑣𝑠 for all 𝑡 ∈ [0, 1]

}
and let

𝐼 ( 𝑓 ) = inf
𝑣∈C 𝑓

1
2
∥𝑣∥2

H𝐻
(22)

whenever C 𝑓 ≠ ∅, and 𝐼 ( 𝑓 ) = ∞ otherwise.

We now return to SDE (17). Recall that the sample paths of 𝐵𝐻 are a.s. in
𝐶𝐻−Y ( [0, 1] : R𝑑) for any 0 < Y < 𝐻. Thus as an immediate consequence of
Proposition 3 and Fernique’s theorem (cf. [16]) we have the following result.

Proposition 4 Let Assumption 2 be satisfied.

(a) For any 𝛼 ∈ (1 − 𝐻,min{ 1
2 , _,

𝛾

1+𝛾 }), the SDE (17) has a unique pathwise
solution 𝑋 Y with 𝑋 Y ∈ 𝑊 𝛼,∞

0 ( [0, 1] : R𝑚) a.s. Moreover, for P-almost all𝜔 ∈ Ω,
the solution 𝑋 Y (𝜔) is (1 − 𝛼)-Hölder continuous.

(b) The solution 𝑋 Y to the SDE (17) satisfies

sup
Y∈ (0,1)

E∥𝑋 Y ∥ 𝑝1−𝛼 < ∞, for all 𝑝 ≥ 1. (23)

The following result gives a LDP for the solution process {𝑋 Y}. Proof is in Section
4.

Theorem 2 Suppose that Assumption 2 is satisfied and let for Y ∈ (0, 1), 𝑋 Y be
defined as in (17). Then the family {𝑋 Y : Y ∈ (0, 1)} satisfies a large deviation
principle in 𝐶 ( [0, 1] : R𝑚) with rate function 𝐼 defined in (22).

4 Proofs

In this section we give the proofs of Proposition 2, Theorem 1, Proposition 3(b) and
Theorem 2.
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4.1 Proof of Proposition 2

In this subsection we describe the abstract Wiener space for 𝐵𝐻 and, using [39,
Theorem 3.2], provide the proof of the variational representation for functionals of
fractional Brownian motion given in Proposition 2.

The following elementary lemma shows that functions in H𝐻 are 𝐻-Hölder
continuous.

Lemma 2 Let ℎ ∈ H𝐻 . Then ℎ ∈ 𝐶𝐻 ( [0, 1] : R𝑑), and ∥ℎ∥∞ ≤ ∥ℎ∥H𝐻
and

∥ℎ∥𝐻 ≤ ∥ℎ∥H𝐻
.

Proof Without loss of generality, we assume 𝑑 = 1. For ℎ = 𝐾𝐻 ¤ℎ ∈ H𝐻 and
𝑡 ∈ [0, 1], we have, from the integral representation (8),

ℎ(𝑡) =
∫ 1

0
𝐾𝐻 (𝑡, 𝑢) ¤ℎ(𝑢)𝑑𝑢

= E

(∫ 1

0
𝐾𝐻 (𝑡, 𝑢)𝑑𝐵𝑢

∫ 1

0
¤ℎ(𝑢)𝑑𝐵𝑢

)
= E

(
𝐵𝐻𝑡

∫ 1

0
¤ℎ(𝑢)𝑑𝐵𝑢

)
,

where 𝐵 is a standard Brownian motion and consequently 𝐵𝐻𝑡 =
∫ 1

0 𝐾𝐻 (𝑡, 𝑢)𝑑𝐵𝑢 is
a fractional Brownian motion with Hurst parameter 𝐻. Then, for any 𝑠, 𝑡 ∈ [0, 1],
we have

|ℎ(𝑡) | ≤
(
E
(
|𝐵𝐻𝑡 |2

))1/2
∥ ¤ℎ∥𝐿2 = 𝑡𝐻 ∥ℎ∥H𝐻

≤ ∥ℎ∥H𝐻
, (24)

and

|ℎ(𝑡) − ℎ(𝑠) | ≤
(
E
(
|𝐵𝐻𝑡 − 𝐵𝐻𝑠 |2

))1/2
∥ ¤ℎ∥𝐿2 = |𝑡 − 𝑠 |𝐻 ∥ ¤ℎ∥𝐿2 = |𝑡 − 𝑠 |𝐻 ∥ℎ∥H𝐻

,

which completes the proof. □

Recall that Ω = 𝐶0 ( [0, 1] : R𝑑) is a Banach space equipped with the sup-norm
∥ · ∥∞. Let Ω∗ be its topological dual.

We now introduce the abstract Wiener space associated with a fractional Brownian
motion. The following result is taken from [11, Theorem 3.3].

Lemma 3 If we identify 𝐿2 ( [0, 1] : R𝑑) and its dual, we have the following diagram

Ω∗
𝑖∗
𝐻

−−−−−−−→ H ∗
𝐻

𝐾∗
𝐻

−−−−−−−→ 𝐿2 ( [0, 1] : R𝑑)
𝐾𝐻

−−−−−−−→ H𝐻

𝑖𝐻

−−−−−−−→ Ω

Where 𝐾𝐻 is defined by (11), 𝑖𝐻 is the injection from H𝐻 into Ω, and 𝐾∗
𝐻

and 𝑖∗
𝐻

are the respective adjoints.

(a)The injection 𝑖𝐻 embeds H𝐻 densely into Ω, and H𝐻 is the Cameron-Martin
space of the abstract Wiener space (𝑖𝐻 ,H𝐻 ,Ω) in the sense of Gross [19].
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(b)The restriction of 𝐾∗
𝐻

to Ω∗ can be represented by

(𝐾∗
𝐻[) (𝑠) =

∫ 1

0
𝐾𝐻 (𝑡, 𝑠)[(𝑑𝑡) =

(∫ 1

0
𝐾𝐻 (𝑡, 𝑠)[1 (𝑑𝑡), . . . ,

∫ 1

0
𝐾𝐻 (𝑡, 𝑠)[𝑑 (𝑑𝑡)

)
,

for any [ = ([1, . . . , [𝑑) ∈ Ω∗.

Next, we introduce the Skorohod integral 𝛿(ℎ) for ℎ ∈ H𝐻 . This is well known
(cf. [11], [39] and references therein) but we give a self contained presentation
for reader’s convenience. The injection 𝑖∗

𝐻
embeds Ω∗ densely into H ∗

𝐻
, since Ω∗

separates H𝐻 . Define 𝑅𝐻 = 𝐾𝐻 ◦ 𝐾∗
𝐻

, then 𝑅𝐻 embeds Ω∗ densely into H𝐻 ,
namely, for any ℎ ∈ H𝐻 , there exists a sequence of {[𝑛}∞𝑛=1 ⊂ Ω∗ such that
lim
𝑛→∞

∥𝑅𝐻[𝑛 − ℎ∥H𝐻
= 0. Next note that∫

|[𝑛 (𝜔) − [𝑘 (𝜔) |2P(𝑑𝜔)

= E( |[𝑛 (·) − [𝑘 (·) |2)

= E
©«

∑︁
1≤𝑖, 𝑗≤𝑑

∫ 1

0

∫ 1

0
𝜔𝑖 (𝑡)𝜔 𝑗 (𝑠) ([𝑖𝑛 − [𝑖𝑘) (𝑑𝑡) ([

𝑗
𝑛 − [ 𝑗𝑘) (𝑑𝑠)

ª®¬
=

∑︁
1≤𝑖, 𝑗≤𝑑

∫ 1

0

∫ 1

0
𝑅
𝑖, 𝑗

𝐻
(𝑡, 𝑠) ([𝑖𝑛 − [𝑖𝑘) (𝑑𝑡) ([

𝑗
𝑛 − [ 𝑗𝑘) (𝑑𝑠)

=
∑︁

1≤𝑖, 𝑗≤𝑑

∫ 1

0

∫ 1

0

∫ 1

0
𝛿𝑖, 𝑗𝐾𝐻 (𝑡, 𝑟)𝐾𝐻 (𝑠, 𝑟)𝑑𝑟 ([𝑖𝑛 − [𝑖𝑘) (𝑑𝑡) ([

𝑗
𝑛 − [ 𝑗𝑘) (𝑑𝑠)

=

∫ 1

0
|𝐾∗
𝐻 ([𝑛 − [𝑘) (𝑟) |2𝑑𝑟 = ∥𝑅𝐻 ([𝑛 − [𝑘)∥2

H𝐻
→ 0,

as 𝑛, 𝑘 → ∞. Therefore, there exists 𝛿(ℎ) ∈ 𝐿2 (Ω, F , P) such that lim
𝑛→∞
E( |[𝑛 (·) −

𝛿(ℎ) |2) = 0. The limit 𝛿(ℎ) is called the Skorohod integral of ℎ. Moreover, the
following isometry property holds

E(𝛿(ℎ)𝛿(𝑔)) = ⟨ℎ, 𝑔⟩H𝐻
, for any ℎ, 𝑔 ∈ H𝐻 . (25)

Recall the filtered probability space (Ω, F , P, {F 𝐻
𝑡 }) introduced below Definition

1 and recall that {𝐵𝐻𝑡 } is the canonical coordinate process on (Ω, F ).
Define the family {𝜋𝐻𝑡 , 𝑡 ∈ [0, 1]} of orthogonal projections in H𝐻 by

𝜋𝐻𝑡 ℎ = 𝜋𝐻𝑡 (𝐾𝐻 ¤ℎ) = 𝐾𝐻 ( ¤ℎ1[0,𝑡 ]), ℎ ∈ H𝐻 . (26)

Define for 𝑖 = 1, . . . 𝑑, 𝑒𝑖 : [0, 1] → R𝑑 as

(𝑒𝑖 (𝑡)) 𝑗 =
{

0 if 𝑗 ≠ 𝑖
1 if 𝑗 = 𝑖

, 𝑡 ∈ [0, 1] .
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Then 𝑒𝑖 ∈ 𝐿2 ( [0, 1] : R𝑑) for 𝑖 = 1, . . . 𝑑. Define the process 𝐵 = (𝐵1, . . . , 𝐵𝑑) by

𝐵𝑖𝑡 = 𝛿(𝜋𝐻𝑡 𝐾𝐻𝑒𝑖), 𝑡 ∈ [0, 1], 𝑖 = 1, . . . , 𝑑. (27)

If ℎ ∈ H𝐻 then, it can be shown that, 𝑔 defined as

𝑔(𝑡) = 𝑐−1
𝐻 𝑡

𝐻− 1
2 (𝐷𝐻− 1

2
0+ (𝜓−1ℎ′)) (𝑡), 𝑡 ∈ [0, 1]

is in 𝐿2 ( [0, 1] : R𝑑) and we have ℎ = 𝐾𝐻𝑔. Henceforth, for ℎ ∈ H𝐻 , we will take
the function 𝑔 defined as above the definition of ¤ℎ in the representation ℎ = 𝐾𝐻 ¤ℎ.

The following result is a consequence of [11, Proposition 4.4, Theorems 4.3 and
4.8].

Lemma 4 (a)For any 𝑡 ∈ [0, 1], F 𝐻
𝑡 = 𝜎{𝛿(𝜋𝐻𝑡 ℎ), ℎ ∈ H𝐻 } ∨ N .

(b)A H𝐻 -valued stochastic process 𝑢 = 𝐾𝐻 ¤𝑢 is {F 𝐻
𝑡 , 𝑡 ∈ [0, 1]}-adapted if and

only if the process ¤𝑢 is {F 𝐻
𝑡 , 𝑡 ∈ [0, 1]}-progressively measurable.

(c)The process 𝐵 = {𝐵𝑡 = (𝐵1
𝑡 , . . . , 𝐵

𝑑
𝑡 ), 𝑡 ∈ [0, 1]} is a P-standard Brownian

motion and 𝜎{𝐵𝑠 , 𝑠 ≤ 𝑡} ∨ N equals F 𝐻
𝑡 for 𝑡 ∈ [0, 1].

Proof of Proposition 2. The collection {𝜋𝐻𝑡 , 𝑡 ∈ [0, 1]} introduced in (26) defines
a continuous and strictly monotonic resolution of the identity in H𝐻 in the sense
of [39, Section 2] and furthermore the operator 𝛿(·) introduced in the latter paper
coincides with the Skorohod integral defined above (25). Also, the classes A and
A𝑏 in Section 3.1 are the same as the classes H 𝑎 and H 𝑎

𝑏
in [39] when specialized

to the setting considered here. The result is now immediate from [39, Theorem 3.2].
□

4.2 Proof of Theorem 1

The proof follows along the lines of [4, Theorem 4.4] however we provide details
for reader’s convenience. It will be convenient to work with the following equivalent
formulation of a LDP.

Definition 3 Let 𝐼 be a rate function on some Polish space E. A collection {𝑋 Y :
Y ∈ [0, 1]} of E-valued random variables is said to satisfy the Laplace principle
upper bound (lower bound, respectively) on E with rate function 𝐼 if for all bounded
continuous functions ℎ : E → R,

lim sup
Y→0

−Y logE
(
exp

{
− ℎ(𝑋

Y)
Y

})
≤ inf
𝑥∈E

{ℎ(𝑥) + 𝐼 (𝑥)}, (28)

(respectively,

lim inf
Y→0

−Y logE
(
exp

{
− ℎ(𝑋

Y)
Y

})
≥ inf
𝑥∈E

{ℎ(𝑥) + 𝐼 (𝑥)}.) (29)
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The Laplace principle (LP) is said to hold for {𝑋 Y : Y ∈ [0, 1]} with rate function
𝐼 if both the Laplace upper bound and lower bound are satisfied for all bounded
continuous functions ℎ : E → R.

It is well known that a collection {𝑋 Y : Y ∈ [0, 1]} of E-valued random variables
satisfies a LDP with rate function 𝐼 if and only if it satisfies a LP with rate function
𝐼 (cf. [5, Theorems 1.5 and 1.8]).

We now proceed to the proof of Theorem 1.

Proof (Proof of Theorem 1) It suffices to prove (28) and (29), with 𝐼 as defined in
(16), for all real-valued, bounded and continuous functions ℎ on E, and to prove that
𝐼 is a rate function.

Proof of the upper bound (28): Without loss we assume that inf𝑥∈E{ℎ(𝑥)+𝐼 (𝑥)} <
∞. Let 𝛿 > 0 be arbitrary. Then there exists 𝑥0 ∈ E such that

ℎ(𝑥0) + 𝐼 (𝑥0) ≤ inf
𝑥∈E

{ℎ(𝑥) + 𝐼 (𝑥)} + 𝛿
2
< ∞. (30)

From the definition of 𝐼 there exists �̃� ∈ H𝐻 such that

1
2
∥ �̃�∥2

H𝐻
≤ 𝐼 (𝑥0) +

𝛿

2
, and 𝑥0 = G0 (�̃�).

Applying Proposition 2 to the function ℎ ◦ GY , one has

−Y logE
(
exp

{
− ℎ(𝑋

Y)
Y

})
= − Y logE

(
exp

{
− ℎ ◦ G

Y (
√
Y𝜔)

Y

})
= inf
𝑣∈A𝑏

E

(
ℎ ◦ GY

(√
Y𝜔 + 𝑣

)
+ 1

2
∥𝑣∥2

H𝐻

)
. (31)

Thus, we have

lim sup
Y→0

−Y logE
(
exp

{
− ℎ(𝑋

Y)
Y

})
= lim sup

Y→0
inf
𝑣∈A𝑏

E

(
ℎ ◦ GY

(√
Y𝜔 + 𝑣

)
+ 1

2
∥𝑣∥2

H𝐻

)
≤ lim sup

Y→0
E

(
ℎ ◦ GY

(√
Y𝜔 + �̃�

)
+ 1

2
∥ �̃�∥2

H𝐻

)
≤ lim sup

Y→0
E
(
ℎ ◦ GY

(√
Y𝜔 + �̃�

) )
+ 𝐼 (𝑥0) +

𝛿

2
.

(32)

Since ℎ is bounded and continuous, from (i) in Assumption 1, as Y go to 0 the last
term in the above inequality equals

ℎ ◦ G0 (�̃�) + 𝐼 (𝑥0) +
𝛿

2
= ℎ(𝑥0) + 𝐼 (𝑥0) +

𝛿

2
. (33)
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Combining (30), (32) and (33), we obtain

lim sup
Y→0

−Y logE
(
exp

{
− ℎ(𝑋

Y)
Y

})
≤ inf
𝑥∈E

{ℎ(𝑥) + 𝐼 (𝑥)} + 𝛿.

Since 𝛿 is arbitrary, the upper bound holds.

Proof of the lower bound (29): Fix 𝛿 > 0. Then for each Y there exist 𝑣Y ∈ A𝑏

such that

inf
𝑣∈A𝑏

E

(
ℎ ◦ GY

(√
Y𝜔 + 𝑣

)
+ 1

2
∥𝑣∥2

H𝐻

)
≥ E

(
ℎ ◦ GY

(√
Y𝜔 + 𝑣Y

)
+ 1

2
∥𝑣Y ∥2

H𝐻

)
− 𝛿.
(34)

Next note that from (31) and (34), for all Y, E
(

1
2 ∥𝑣

Y ∥2
H𝐻

)
≤ 2𝑀 + 𝛿, where 𝑀 =

∥ℎ∥∞. Now define stopping times 𝜏Y
𝑁

= inf{𝑡 ∈ [0, 1] : 1
2

∫ 𝑡
0 | ¤𝑣Y (𝑠) |2𝑑𝑠 ≥ 𝑁} ∧ 1,

where 𝑣Y = 𝐾𝐻 ¤𝑣Y . Denote ¤𝑣Y,𝑁 = ¤𝑣Y1[0,𝜏Y
𝑁
] (𝑠) and 𝑣Y,𝑁 = 𝐾𝐻 ¤𝑣Y,𝑁 . Then the

processes 𝑣Y,𝑁 are in A𝑏 with 1
2 ∥𝑣

Y,𝑁 ∥2
H𝐻

≤ 𝑁 a.s, and moreover

P(𝑣Y ≠ 𝑣Y,𝑁 ) ≤ P
(

1
2

∫ 1

0
| ¤𝑣Y (𝑠) |2𝑑𝑠 ≥ 𝑁

)
= P

(
1
2
∥𝑣Y ∥2

H𝐻
≥ 𝑁

)
≤ 2𝑀 + 𝛿

𝑁
.

Choosing 𝑁 large enough so that 2𝑀 (2𝑀+𝛿 )
𝑁

≤ 𝛿, we see that (34) holds with 𝑣Y
replaced with 𝑣Y,𝑁 and 𝛿 with 2𝛿. Henceforth, we will suppress 𝑁 and denote 𝑣Y,𝑁
as 𝑣Y . Note that, by definition,

sup
Y>0

1
2
∥𝑣Y ∥2

H𝐻
≤ 𝑁 a.s. (35)

Since 𝛿 > 0 is arbitrary, in order to prove the lower bound (29), we now only need
to show that

lim inf
Y→0

E

(
ℎ ◦ GY

(√
Y𝜔 + 𝑣Y

)
+ 1

2
∥𝑣Y ∥2

H𝐻

)
≥ inf
𝑥∈E

{ℎ(𝑥) + 𝐼 (𝑥)}. (36)

Choose a subsequence (still relabelled by Y) along which 𝑣Y converges in distri-
bution to 𝑣 as 𝑆𝑁 -valued random elements. Since ℎ is a bounded and continuous
function and the function on H𝐻 defined by 𝑣 ↦→ 1

2 ∥𝑣∥
2
H𝐻

is lower semi-continuous
with respect to the weak topology, using (i) in Assumption 1 and Fatou’s lemma, we
obtain

lim inf
Y→0

E

(
ℎ ◦ GY

(√
Y𝜔 + 𝑣Y

)
+ 1

2
∥𝑣Y ∥2

H𝐻

)
≥ E

(
ℎ ◦ G0 (𝑣) + 1

2
∥𝑣∥2

H𝐻

)
≥ inf

{ (𝑥,𝑣):𝑥=G0 (𝑣) }

{
ℎ(𝑥) + 1

2
∥𝑣∥2

H𝐻

}
≥ inf
𝑥∈E

{ℎ(𝑥) + 𝐼 (𝑥)}.
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This completes the proof of the lower bound.

Compactness of Level Sets: In order to prove that 𝐼 is a rate function, we need to
show that, for any 0 < 𝑀 < ∞, the level set {𝑥 : 𝐼 (𝑥) ≤ 𝑀} is compact. In order to
prove this, we will show that

{𝑥 : 𝐼 (𝑥) ≤ 𝑀} =
∞⋂
𝑛=1

Γ𝑀+ 1
𝑛
.

The compactness of the level set {𝑥 : 𝐼 (𝑥) ≤ 𝑀} will then follow, since from (ii) in
Assumption 1 the set Γ𝑀+ 1

𝑛
is compact for each 𝑛.

Let 𝑥 ∈ E with 𝐼 (𝑥) ≤ 𝑀 . Then, for each 𝑛, from the definition of 𝐼 (𝑥) there exists
𝑣𝑛 ∈ H𝐻 such that 1

2 ∥𝑣
𝑛∥2

H𝐻
≤ 𝑀 + 1

𝑛
and 𝑥 = G0 (𝑣𝑛). This shows 𝑥 ∈ ⋂∞

𝑛=1 Γ𝑀+ 1
𝑛

.
Conversely, suppose 𝑥 ∈ ⋂∞

𝑛=1 Γ𝑀+ 1
𝑛

. Then, for each 𝑛, there exists 𝑣𝑛 ∈ 𝑆𝑀+ 1
𝑛

such
that 𝑥 = G0 (𝑣𝑛). Thus, we have 𝐼 (𝑥) ≤ 1

2 ∥𝑣
𝑛∥2

H𝐻
≤ 𝑀 + 1

𝑛
, for all 𝑛. By letting 𝑛

go to infinity, we conclude that 𝐼 (𝑥) ≤ 𝑀 . This completes the proof that 𝐼 is a rate
function. □

4.3 Proof of Proposition 3(b)

Proof Without loss of generality we assume that 𝑑 = 𝑚 = 1. Now, fix 0 ≤ 𝑠 < 𝑡 ≤ 1.
In the proof, we will use 𝐶 to denote a generic positive constant which may depend
on 𝛼 and all the constants appearing in Assumption 2 but is independent of 𝑠 and 𝑡.
This generic constant may vary from line to line.

From (19), we have

|𝑥𝑡 − 𝑥𝑠 | ≤
∫ 𝑡

𝑠

|𝑏(𝑟, 𝑥𝑟 ) |𝑑𝑟 +
����∫ 𝑡

𝑠

𝜎(𝑟, 𝑥𝑟 )𝑑𝑔𝑟
���� . (37)

Using the Lipschitz property and linear growth of 𝑏 we see that∫ 𝑡

𝑠

|𝑏(𝑟, 𝑥𝑟 ) |𝑑𝑟 ≤ 𝐿

∫ 𝑡

𝑠

(1 + |𝑥𝑠 | + ∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑟 − 𝑠)1−𝛼)𝑑𝑟

≤ 𝐶 (1 + |𝑥𝑠 |) (𝑡 − 𝑠) + 𝐶∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑡 − 𝑠)2−𝛼 . (38)

Recalling from Remark 3 that 𝑠 ↦→ 𝜎(𝑠, 𝑥(𝑠)) ∈ 𝐶 𝛿 ( [0, 1] : R𝑚) for some 𝛿 > 1−𝐻
and using the fractional integration by parts formula given in Proposition 1, we obtain����∫ 𝑡

𝑠

𝜎(𝑟, 𝑥𝑟 )𝑑𝑔𝑟
���� ≤ ∫ 𝑡

𝑠

��𝐷𝛼𝑠+𝜎(𝑟, 𝑥𝑟 )𝐷1−𝛼
𝑡− 𝑔𝑡− (𝑟)

�� 𝑑𝑟.
From (4) and the conditions on 𝜎 in Assumption 2(i) we see that, for 𝑠 ≤ 𝑟 ≤ 𝑡
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𝐾 (1 + |𝑥𝑠 |) + 𝑀 |𝑥𝑟 − 𝑥𝑠 |

(𝑟 − 𝑠)𝛼 + 𝛼
∫ 𝑟

𝑠

𝑀 (𝑟 − 𝑢)_ + 𝑀 |𝑥𝑟 − 𝑥𝑢 |
(𝑟 − 𝑢)𝛼+1 𝑑𝑢

)
≤ 𝐶 (1 + |𝑥𝑠 |) (𝑟 − 𝑠)−𝛼 + 𝐶 (𝑟 − 𝑠)_−𝛼 + 𝐶∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑟 − 𝑠)1−2𝛼 .

It is easy to verify that
��𝐷1−𝛼
𝑡− 𝑔𝑡− (𝑟)

�� ≤ 𝐶∥𝑔∥1−𝛼+𝛿 (𝑡 − 𝑟) 𝛿 . Thus,����∫ 𝑡

𝑠

𝜎(𝑟, 𝑥𝑟 )𝑑𝑔𝑟
���� ≤𝐶∥𝑔∥1−𝛼+𝛿 (1 + |𝑥𝑠 |) (𝑡 − 𝑠)1−𝛼+𝛿 + 𝐶∥𝑔∥1−𝛼+𝛿 (𝑡 − 𝑠)1+_−𝛼+𝛿

+ 𝐶∥𝑔∥1−𝛼+𝛿 ∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑡 − 𝑠)2−2𝛼+𝛿

≤𝐶∥𝑔∥1−𝛼+𝛿 (1 + |𝑥𝑠 |) (𝑡 − 𝑠)1−𝛼+𝛿 (39)

+ 𝐶∥𝑔∥1−𝛼+𝛿 ∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑡 − 𝑠)2−2𝛼+𝛿 .

(40)

Hence, from (37)-(39) we get

∥𝑥∥𝑠,𝑡 ,1−𝛼 ≤ 𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿) (1 + |𝑥𝑠 |) + 𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿)∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑡 − 𝑠)1−𝛼,(41)

for some 𝐶0 > 0 independent of 𝑠, 𝑡. Choose

Δ =

(
1

2𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿)

) 1
1−𝛼

.

Then, for all 𝑠, 𝑡 with 𝑡 − 𝑠 ≤ Δ, we have

∥𝑥∥𝑠,𝑡 ,1−𝛼 ≤ 2𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿) (1 + |𝑥𝑠 |). (42)

Therefore, for 𝑠, 𝑡 as above,

∥𝑥∥𝑠,𝑡 ,∞ ≤ |𝑥𝑠 |+ ∥𝑥∥𝑠,𝑡 ,1−𝛼 (𝑡−𝑠)1−𝛼 ≤ |𝑥𝑠 |+2𝐶0 (1+∥𝑔∥1−𝛼+𝛿) (1+|𝑥𝑠 |) (𝑡−𝑠)1−𝛼 .

In particular, for all 𝑠, 𝑡 with 𝑡 − 𝑠 ≤ Δ, we have ∥𝑥∥𝑠,𝑡 ,∞ ≤ 2|𝑥𝑠 | + 1, and hence

sup
0≤𝑟≤𝑡

|𝑥𝑟 | ≤ 2 sup
0≤𝑟≤𝑠

|𝑥𝑟 | + 1. (43)

Now divide the interval [0, 1] into 𝑛 =
[ 1
Δ

]
+ 1 subintervals with equal lengths, and

denote 𝑡𝑘 = 𝑘
𝑛

, 𝑘 = 0, 1, . . . , 𝑛. Applying (43) in each subinterval we obtain

sup
0≤𝑟≤1

|𝑥𝑟 | ≤ 2𝑛 |𝑥0 | + 2𝑛−1 + 2𝑛−2 + · · · + 1 ≤ 2𝑛 ( |𝑥0 | + 1).

Thus, recalling the definition of 𝑛,Δ,

∥𝑥∥∞ ≤ 21+(2𝐶0 (1+∥𝑔∥1−𝛼+𝛿 ) )
1

1−𝛼 ( |𝑥0 | + 1). (44)

Now, fix 𝑢, 𝑣 in [0, 1] with 𝑢 < 𝑣. If 𝑣 − 𝑢 ≤ Δ then (42) and (44) yield
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|𝑥𝑣 − 𝑥𝑢 |
(𝑣 − 𝑢)1−𝛼 ≤ 2𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿) (1 + ∥𝑥∥∞)

≤ 2𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿)
(
1 + 21+(2𝐶0 (1+∥𝑔∥1−𝛼+𝛿 ) )

1
1−𝛼 ( |𝑥0 | + 1)

)
. (45)

If 𝑣 − 𝑢 > Δ, there are 𝑘0 = 𝑘0 (𝑢, 𝑣), 𝑘1 = 𝑘1 (𝑢, 𝑣) ∈ {1, . . . , 𝑛} such that 𝑘0 ≤ 𝑘1,
𝑡𝑘0 − 𝑢 ≤ 1/𝑛, 𝑣 − 𝑡𝑘1 ≤ 1/𝑛, and

𝑢 < 𝑡𝑘 < 𝑣, for all 𝑘 = 𝑘0, 𝑘0 + 1, . . . , 𝑘1.

Then, applying (42) and (44) we obtain

|𝑥𝑣 − 𝑥𝑢 |
(𝑣 − 𝑢)1−𝛼 ≤

|𝑥𝑣 − 𝑥𝑡𝑘1
|

(𝑣 − 𝑡𝑘1 )1−𝛼 +
|𝑥𝑡𝑘0

− 𝑥𝑢 |
(𝑡𝑘0 − 𝑢)1−𝛼 +

𝑘1∑︁
𝑘=𝑘0+1

|𝑥𝑡𝑘 − 𝑥𝑡𝑘−1 |
(𝑡𝑘 − 𝑡𝑘−1)1−𝛼

≤ 2𝑛𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿) (1 + ∥𝑥∥∞)

≤ 2𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿)
(
(2𝐶0 (1 + ∥𝑔∥1−𝛼+𝛿))

1
1−𝛼 + 2

)
×
(
1 + 21+(2𝐶0 (1+∥𝑔∥1−𝛼+𝛿 ) )

1
1−𝛼 ( |𝑥0 | + 1)

)
. (46)

The estimates in (44)-(46) imply (20) and (21) completing the proof. □

4.4 Proof of Theorem 2

Throughout this subsection we assume that Assumption 2 holds. The following
lemma is immediate from the strong existence and pathwise uniqueness result in
Proposition 4.

Lemma 5 For each Y ∈ (0, 1), there exists a measurable function

GY : 𝐶0 ( [0, 1] : R𝑑) → 𝐶 ( [0, 1] : R𝑚)

such that, for any probability space (Ω, F , P) with a fractional Brownian motion
𝐵𝐻 defined on it,

𝑋 Y = GY (
√
Y𝐵𝐻 ) (47)

is the unique pathwise solution of (17). Moreover, for any𝛼 ∈ (1−𝐻,min{ 1
2 , _,

𝛾

1+𝛾 }),
the following estimate holds:

sup
Y∈ (0,1)

E∥𝑋 Y ∥ 𝑝1−𝛼 < ∞, for all 𝑝 ≥ 1. (48)

Remark 4 The estimate (48) implies the tightness of {𝑋 Y} in 𝐶 ( [0, 1] : R𝑚). More-
over, by a similar argument as in the proof of Lemma 7, it can be seen that the
sequence of processes {𝑋 Y} converges in distribution to the solution 𝜙 to the fol-
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lowing ordinary differential equation

𝜙𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑠, 𝜙𝑠)𝑑𝑠. (49)

The existence and uniqueness of the solution to (49) follows from the Lipschitz
condition on 𝑏 in Assumption 2.

The following Girsanov theorem is a multi-dimensional version of [11, Theorem
4.9]. Recall the operator 𝐾𝐻 from (11) and the canonical space (Ω, F , {F 𝐻

𝑡 }, P)
along with the canonical process 𝐵𝐻 on this space from Section 4.1.

Theorem 3 Let 𝑢 = 𝐾𝐻 ¤𝑢 ∈ A be such that

E

(
exp

{
−
∫ 1

0
¤𝑢(𝑠) · 𝑑𝐵𝑠 −

1
2

∫ 1

0
| ¤𝑢(𝑠) |2𝑑𝑠

})
= 1,

where 𝐵 is the 𝑑 -dimensional standard Brownian motion defined by (27) on the
probability space (Ω, F , {F 𝐻

𝑡 }, P) and∫ 1

0
¤𝑢𝑠 · 𝑑𝐵𝑠 =

𝑑∑︁
𝑖=1

∫ 1

0
¤𝑢𝑖𝑠𝑑𝐵𝑖𝑠

is the usual Itô integral. Let P̃ be the probability measure on (Ω, F ) defined by

𝑑P̃

𝑑P
= exp

{
−
∫ 1

0
¤𝑢(𝑠) · 𝑑𝐵𝑠 −

1
2

∫ 1

0
| ¤𝑢(𝑠) |2𝑑𝑠

}
.

Then the law of the process

�̃�𝐻 =

{
�̃�𝐻𝑡 = 𝐵𝐻𝑡 + 𝑢𝑡 = 𝐵𝐻𝑡 +

∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠) ¤𝑢𝑠𝑑𝑠 : 𝑡 ∈ [0, 1]

}
(50)

under the probability P̃ is the same as the law of the process 𝐵𝐻 under the probability
P. Namely, the process �̃�𝐻 is a fractional Brownian motion under P̃.

Let 𝑣 ∈ A𝑏 and consider the controlled version of the SDE (17) given as

𝑋
Y,𝑣
𝑡 = 𝑥0 +

∫ 𝑡

0
𝑏(𝑠, 𝑋 Y,𝑣𝑠 )𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑋 Y,𝑣𝑠 )𝑑𝑣𝑠 +

√
Y

∫ 𝑡

0
𝜎(𝑠, 𝑋 Y,𝑣𝑠 )𝑑𝐵𝐻𝑠 . (51)

The following result gives the wellposedness of the above equation.

Lemma 6 Let GY be as in Lemma 5 and let 𝑣 ∈ A𝑏. Define

𝑋 Y,𝑣 = GY (
√
Y𝐵𝐻 + 𝑣).

Then 𝑋 Y,𝑣 is the unique pathwise solution of (51). Moreover, for any fixed 𝛼 with
1 − 𝐻 < 𝛼 < min{ 1

2 , _,
𝛾

1+𝛾 }and for any 0 < 𝛿 < 𝛼 − (1 − 𝐻), we have, a.s.,
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∥𝑋 Y,𝑣∥1−𝛼 ≤ �̃�1 (1 + |𝑥0 |) (1 + ∥𝐵𝐻 ∥^1−𝛼+𝛿 + ∥𝑣∥^H𝐻
) (1 + ∥𝐵𝐻 ∥1−𝛼+𝛿 + ∥𝑣∥H𝐻

)

×(1 + exp{�̃�2

(
∥𝐵𝐻 ∥^1−𝛼+𝛿 + ∥𝑣∥^H𝐻

)
}), (52)

for all Y, where ^ = 1
1−𝛼 and the constants �̃�1 and �̃�2 depend only on 𝛼, 𝛿 and all

the constants appearing in Assumption 2.

Proof Fix 𝑣 = 𝐾𝐻 ¤𝑣 ∈ A𝑏. Note that

E

(
exp

{
− 1
√
Y

∫ 1

0
¤𝑣𝑠 · 𝑑𝐵𝑠 −

1
2Y

∫ 1

0
| ¤𝑣𝑠 |2𝑑𝑠

})
= 1,

where 𝐵 is the 𝑑 -dimensional standard Brownian motion defined by (27). Let P̃ be
the probability measure defined by

𝑑P̃

𝑑P
= exp

{
− 1
√
Y

∫ 1

0
¤𝑣𝑠 · 𝑑𝐵𝑠 −

1
2Y

∫ 1

0
| ¤𝑣𝑠 |2𝑑𝑠

}
.

Then, by Theorem 3, the process �̃�𝐻 = 𝐵𝐻 + 1√
Y
𝑣 is a fractional Brownian motion on

(Ω, F , P̃, {F𝑡 }). By Lemma 5, the process 𝑋 Y,𝑣 = GY (
√
Y𝐵𝐻 + 𝑣) = GY (

√
Y�̃�𝐻 ) is

the unique solution to (17) on (Ω, F , P̃, {F𝑡 }). Note that the equation (17) with �̃�𝐻
is precisely the same as the equation (51). Since the probability measures P̃ and P are
equivalent (i.e. mutually absolutely continuous), we see that 𝑋 Y,𝑣 is a strong solution
of (51) on (Ω, F , P, {F𝑡 }). Uniqueness of solutions of (51) is argued similarly using
the uniqueness result in Lemma 5 and Girsanov’s theorem (Theorem 3) once more.

Now fix 𝛼 with 1 − 𝐻 < 𝛼 < min{ 1
2 , _,

𝛾

1+𝛾 } and 0 < 𝛿 < 𝛼 − (1 − 𝐻). From
Lemma 2, it follows that

∥𝑣∥1−𝛼+𝛿 ≤ ∥𝑣∥𝐻 ≤ ∥𝑣∥H𝐻
.

Then, applying Proposition 3 (with 𝑔𝑠 =
√
Y𝐵𝐻𝑠 + 𝑣𝑠), we obtain (52) for some

constants �̃�1 and �̃�2, depending only on the constants 𝐶1, 𝐶2 in Proposition 3. □

Next, for 𝑣 ∈ H𝐻 , consider the following deterministic equation

𝑋0,𝑣 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑠, 𝑋0,𝑣

𝑠 )𝑑𝑠 +
∫ 𝑡

0
𝜎(𝑠, 𝑋0,𝑣

𝑠 )𝑑𝑣𝑠 . (53)

Due to Assumption 2 and the Hölder continuity of 𝑣 proved in Lemma 2, Proposition
3 implies the existence and uniqueness of the solution to (53). Furthermore, for any
𝛼 ∈ (1−𝐻,min{ 1

2 , _,
𝛾

1+𝛾 }), from (20) and the Hölder continuity of 𝑣 it follows that

∥𝑋0,𝑣∥1−𝛼 ≤ 𝐶3 (1 + |𝑥0 |) (1 + ∥𝑣∥^H𝐻
) (1 + ∥𝑣∥H𝐻

) (1 + exp
{
𝐶2∥𝑣∥^H𝐻

}
), (54)

where ^ = 1
1−𝛼 and 𝐶2, 𝐶3 are the constants in Proposition 3.

Now, define the map G0 : H𝐻 → 𝐶 ( [0, 1] : R𝑚) by
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G0 (𝑣) = 𝑋0,𝑣, 𝑣 ∈ H𝐻 , (55)

where 𝑋0,𝑣 is the unique solution to (53).

Lemma 7 Let the map G0 be as in (55). Then for each 𝑁 < ∞, the restriction of the
map G0 to 𝑆𝑁 is continuous.

Proof Let 𝑣𝑛 = 𝐾𝐻 (¤𝑣𝑛) and 𝑣 = 𝐾𝐻 ¤𝑣 be in 𝑆𝑁 , and assume that 𝑣𝑛 converges to 𝑣
in 𝑆𝑁 (i.e. under the weak topology on H𝐻 ).

Let 𝑋0,𝑣𝑛 be the solution to (53) with 𝑣 replaced by 𝑣𝑛, that is, it satisfies the
following equation

𝑋
0,𝑣𝑛
𝑡 = 𝑥0 +

∫ 𝑡

0
𝑏(𝑠, 𝑋0,𝑣𝑛

𝑠 )𝑑𝑠 +
∫ 𝑡

0
𝜎(𝑠, 𝑋0,𝑣𝑛

𝑠 )𝑑𝑣𝑛𝑠 . (56)

Now, fix 𝛼 ∈ (1 − 𝐻,min{ 1
2 , _,

𝛾

1+𝛾 }). Note that sup𝑛 ∥𝑣𝑛∥H𝐻
≤
√

2𝑁 < ∞, and
hence, by (54), we see that sup𝑛 ∥𝑋0,𝑣𝑛 ∥1−𝛼 < ∞. Thus, the sequence {𝑋0,𝑣𝑛 } is
relatively compact in 𝐶 ( [0, 1] : R𝑚) and therefore for any subsequence of {𝑋0,𝑣𝑛 },
there is a further subsequence (still relabeled by 𝑛) such that 𝑋0,𝑣𝑛 converges to 𝑋
in 𝐶 ( [0, 1] : R𝑚).

For any ℎ = 𝐾𝐻 ¤ℎ ∈ H𝐻 , (13) implies that ℎ is differentiable and

ℎ′ (𝑡) = 𝑐𝐻 𝑡𝐻− 1
2 (𝐼𝐻− 1

2
0+ (𝜓−1 ¤ℎ)) (𝑡) = 𝑐𝐻 𝑡

𝐻− 1
2

Γ(𝐻 − 1
2 )

∫ 𝑡

0
(𝑡 − 𝑠)𝐻− 3

2 𝑠
1
2 −𝐻 ¤ℎ(𝑠)𝑑𝑠, (57)

where 𝜓 is as in Lemma 1. Thus, if 𝑓 ∈ 𝐶 ( [0, 1] : R𝑑), the Riemann-Stieltjes
integral

∫ 1
0 𝑓 (𝑠)𝑑ℎ(𝑠) is well-defined and equals

∫ 1
0 𝑓 (𝑠)ℎ′ (𝑠)𝑑𝑠.

From the Lipschitz condition on 𝜎 and changing the order of integration, we have����∫ 𝑡

0
𝜎(𝑠, 𝑋0,𝑣𝑛

𝑠 )𝑑𝑣𝑛𝑠 −
∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑠

����
≤
����∫ 𝑡

0
𝜎(𝑠, 𝑋0,𝑣𝑛

𝑠 )𝑑𝑣𝑛𝑠 −
∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑛𝑠

���� + ����∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑛𝑠 −

∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑠

����
=

𝑐𝐻

Γ(𝐻 − 1
2 )

����∫ 𝑡

0
(𝜎(𝑠, 𝑋0,𝑣𝑛

𝑠 ) − 𝜎(𝑠, 𝑋𝑠))𝑠𝐻− 1
2

(∫ 𝑠

0
(𝑠 − 𝑢)𝐻− 3

2 𝑢
1
2 −𝐻 ¤𝑣𝑛𝑢𝑑𝑢

)
𝑑𝑠

����
+ 𝑐𝐻

Γ(𝐻 − 1
2 )

����∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑠𝐻− 1

2

(∫ 𝑠

0
(𝑠 − 𝑢)𝐻− 3

2 𝑢
1
2 −𝐻 (¤𝑣𝑛𝑢 − ¤𝑣𝑢)𝑑𝑢

)
𝑑𝑠

����
≤ 𝑀𝑐𝐻

Γ(𝐻 − 1
2 )

∥𝑋0,𝑣𝑛 − 𝑋 ∥∞
∫ 𝑡

0
𝑢

1
2 −𝐻 | ¤𝑣𝑛𝑢 |

(∫ 𝑡

𝑢

𝑠𝐻− 1
2 (𝑠 − 𝑢)𝐻− 3

2 𝑑𝑠

)
𝑑𝑢

+ 𝑐𝐻

Γ(𝐻 − 1
2 )

����∫ 𝑡

0
𝑢

1
2 −𝐻

(∫ 𝑡

𝑢

𝑠𝐻− 1
2 (𝑠 − 𝑢)𝐻− 3

2𝜎(𝑠, 𝑋𝑠)𝑑𝑠
)
(¤𝑣𝑛𝑢 − ¤𝑣𝑢)𝑑𝑢

���� . (58)

Observe that the first term on the right-hand side of (58) is no more than
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𝐶∥𝑋0,𝑣𝑛 − 𝑋 ∥∞
∫ 1

0
𝑢

1
2 −𝐻 | ¤𝑣𝑛𝑢 |

(∫ 1

𝑢

(𝑠 − 𝑢)𝐻− 3
2 𝑑𝑠

)
𝑑𝑢

≤ 𝐶∥𝑋0,𝑣𝑛 − 𝑋 ∥∞
∫ 1

0
𝑢

1
2 −𝐻 | ¤𝑣𝑛𝑢 |𝑑𝑢

≤ 𝐶∥𝑋0,𝑣𝑛 − 𝑋 ∥∞∥¤𝑣𝑛∥𝐿2

= 𝐶∥𝑋0,𝑣𝑛 − 𝑋 ∥∞∥𝑣𝑛∥H𝐻
≤ 𝐶

√
2𝑁 ∥𝑋0,𝑣𝑛 − 𝑋 ∥∞, (59)

where 𝐶 is a constant depending on 𝑀 and 𝐻 which may vary from line to line.
From the uniform convergence of 𝑋0,𝑣𝑛 to 𝑋 the right side of (59) converges to 0
and thus we obtain

lim
𝑛→∞

∥𝑋0,𝑣𝑛 − 𝑋 ∥∞
∫ 𝑡

0
𝑢

1
2 −𝐻 | ¤𝑣𝑛𝑢 |

(∫ 𝑡

𝑢

𝑠𝐻− 1
2 (𝑠 − 𝑢)𝐻− 3

2 𝑑𝑠

)
𝑑𝑢 = 0. (60)

For the second term on the right-hand side of (58), we first study the function (in 𝑢)
𝑓 𝑡 (𝑢) = 1[0,𝑡 ] (𝑢)

∫ 𝑡
𝑢
𝑠𝐻− 1

2 (𝑠 − 𝑢)𝐻− 3
2𝜎(𝑠, 𝑋𝑠)𝑑𝑠. From (18), we get

| 𝑓 𝑡 (𝑢) | ≤ 𝐾 (1 + ∥𝑋 ∥∞)1[0,𝑡 ] (𝑢)
∫ 𝑡

𝑢

𝑠𝐻− 1
2 (𝑠 − 𝑢)𝐻− 3

2 𝑑𝑠 ≤ 𝐶 (1 + ∥𝑋 ∥∞), (61)

where 𝐶 is a constant depending on 𝐾 and 𝐻. Thus it follows that the function
𝑢 ↦→ 𝑢

1
2 −𝐻 𝑓 𝑡 (𝑢) is in 𝐿2 ( [0, 1] : R𝑚×𝑑). Thus, from the convergence of 𝑣𝑛 to 𝑣 (in

the weak topology), we have, for every 𝑡 ∈ [0, 1],

lim
𝑛→∞

����∫ 𝑡

0
𝑢

1
2 −𝐻

(∫ 𝑡

𝑢

𝑠𝐻− 1
2 (𝑠 − 𝑢)𝐻− 3

2𝜎(𝑠, 𝑋𝑠)𝑑𝑠
)
(¤𝑣𝑛𝑢 − ¤𝑣𝑢)𝑑𝑢

���� = 0. (62)

From (58), (60), (62), we see that, for each 𝑡 ∈ [0, 1],

lim
𝑛→∞

∫ 𝑡

0
𝜎(𝑠, 𝑋0,𝑣𝑛

𝑠 )𝑑𝑣𝑛𝑠 =

∫ 𝑡

0
𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑠 . (63)

From (56), (63), the uniform convergence of 𝑋0,𝑣𝑛 to 𝑋 and the Lipschitz condition
on 𝑏, we have by sending 𝑛 to infinity that 𝑋 satisfies equation (53). Recalling that
(53) has a unique solution, we get 𝑋 = 𝑋0,𝑣. Thus, by a standard subsequential
argument, we see that the full sequence G0 (𝑣𝑛) = 𝑋0,𝑣𝑛 converges to G0 (𝑣) = 𝑋0,𝑣

in 𝐶 ( [0, 1] : R𝑚). The proof is complete. □

Lemma 8 Fix 𝑁 ∈ (0,∞). Let {𝑣Y} ⊂ A𝑏 be a family of 𝑆𝑁 -valued random
variables on (Ω, F , P) such that 𝑣Y converges in distribution to 𝑣 in the weak
topology on 𝑆𝑁 . Then GY (

√
Y𝜔 + 𝑣Y) converges to G0 (𝑣) in distribution.

Proof Note from Lemma 6 that GY (
√
Y𝜔 + 𝑣Y) = 𝑋 Y,𝑣Y , where 𝑋 Y,𝑣Y is the unique

solution to the following SDE:
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𝑋
Y,𝑣Y

𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝑣𝑠 +

√
Y

∫ 𝑡

0
𝜎(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝐵𝐻𝑠 .

(64)
For any fixed 𝛼 with 1 − 𝐻 < 𝛼 < min{ 1

2 , _,
𝛾

1+𝛾 }, from (52) and Fernique’s
theorem (cf. [16]) we have

sup
Y∈ (0,1)

E∥𝑋 Y,𝑣Y ∥ 𝑝1−𝛼 < ∞, for all 𝑝 ≥ 1. (65)

In particular {𝑋 Y,𝑣Y } is tight in 𝐶 ( [0, 1] : R𝑚). This tightness together with the
compactness of 𝑆𝑁 under topology of the weak convergence yield that for any
subsequence of {(𝑋 Y,𝑣Y , 𝑣Y)} there is a further subsequence (still relabeled by Y)
such that (𝑋 Y,𝑣Y , 𝑣Y) converges weakly to (𝑋, 𝑣) in 𝐶 ( [0, 1] : R𝑚) × 𝑆𝑁 .

Define the mapping 𝐹𝑏,𝜎 : 𝐶 ( [0, 1] : R𝑚) × 𝑆𝑁 → 𝐶 ( [0, 1] : R𝑚) as

𝐹
𝑏,𝜎
𝑡 (𝑥, 𝑢) = 𝑥0 +

∫ 𝑡

0
𝑏(𝑠, 𝑥𝑠)𝑑𝑠 +

∫ 𝑡

0
𝜎(𝑠, 𝑥𝑠)𝑑𝑢𝑠 ,

for 𝑡 ∈ [0, 1] and (𝑥, 𝑢) ∈ 𝐶 ( [0, 1] : R𝑚) × 𝑆𝑁 . It is easy to see that the right side
defines a function in 𝐶 ( [0, 1] : R𝑚) for any (𝑥, 𝑢) ∈ 𝐶 ( [0, 1] : R𝑚) × 𝑆𝑁 . We
will now show that 𝐹𝑏,𝜎 is a continuous mapping from 𝐶 ( [0, 1] : R𝑚) × 𝑆𝑁 to
𝐶 ( [0, 1] : R𝑚). Let (𝑥𝑛, 𝑢𝑛) converge to (𝑥, 𝑢) in 𝐶 ( [0, 1] : R𝑚) × 𝑆𝑁 , and denote
𝑢𝑛 = 𝐾𝐻 ¤𝑢𝑛 and 𝑢 = 𝐾𝐻 ¤𝑢 with 𝑢𝑛, 𝑢 ∈ 𝐿2 ( [0, 1] : R𝑑). By the Lipschitz condition
on 𝑏 and analogous arguments as in (58), (60) and (62), we obtain

sup
0≤𝑡≤1

|𝐹𝑏,𝜎𝑡 (𝑥𝑛, 𝑢𝑛) − 𝐹𝑏,𝜎𝑡 (𝑥, 𝑢) |

≤ 𝐿∥𝑥𝑛 − 𝑥∥∞ + 𝑀𝑐𝐻

Γ(𝐻 − 1
2 )

∥𝑥𝑛 − 𝑥∥∞
∫ 1

0
𝑟

1
2 −𝐻 | ¤𝑢𝑛𝑟 |

(∫ 1

𝑟

𝑠𝐻− 1
2 (𝑠 − 𝑟)𝐻− 3

2 𝑑𝑠

)
𝑑𝑟

+ 𝑐𝐻

Γ(𝐻 − 1
2 )

����∫ 1

0
𝑟

1
2 −𝐻

(∫ 1

𝑟

𝑠𝐻− 1
2 (𝑠 − 𝑟)𝐻− 3

2𝜎(𝑠, 𝑥𝑠)𝑑𝑠
)
( ¤𝑢𝑛𝑟 − ¤𝑢𝑟 )𝑑𝑟

���� → 0,

(66)

as 𝑛 → ∞, which proves the continuity of 𝐹𝑏,𝜎 . Thus, by the continuous mapping
theorem, {𝐹𝑏,𝜎· (𝑋 Y,𝑣Y , 𝑣Y) = 𝑥0 +

∫ ·
0 𝑏(𝑠, 𝑋

Y,𝑣Y

𝑠 )𝑑𝑠+
∫ ·

0 𝜎(𝑠, 𝑋
Y,𝑣Y

𝑠 )𝑑𝑣Y𝑠 } converges
in distribution to {𝐹𝑏,𝜎· (𝑋, 𝑣) = 𝑥0 +

∫ ·
0 𝑏(𝑠, 𝑋𝑠)𝑑𝑠 +

∫ ·
0 𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑠} in 𝐶 ( [0, 1] :

R𝑚).
Now for any 0 < 𝛿 < 𝛼 − (1 − 𝐻), from the observation in (39) with (𝑥, 𝑔)

replaced by (𝑋 Y,𝑣Y , 𝐵𝐻 ), we obtain∫ ·

0
𝜎(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝐵𝐻𝑠


1−𝛼

≤ 𝐶 (1 + ∥𝑋 Y,𝑣Y ∥∞ + ∥𝑋 Y,𝑣Y ∥1−𝛼)∥𝐵𝐻 ∥1−𝛼+𝛿

≤ 𝐶 (1 + ∥𝑋 Y,𝑣Y ∥1−𝛼)∥𝐵𝐻 ∥1−𝛼+𝛿 .
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Then, from (65) we get

sup
Y∈ (0,1)

E

∫ ·

0
𝜎(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝐵𝐻𝑠

𝑝
1−𝛼

< ∞, for all 𝑝 ≥ 1,

which implies that {
√
Y
∫ ·

0 𝜎(𝑠, 𝑋
Y,𝑣Y

𝑠 )𝑑𝐵𝐻𝑠 } converges in probability to 0 in
𝐶 ( [0, 1] : R𝑚).

Combining the above observations we now have that

𝑥0 +
∫ ·

0
𝑏(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝑠 +

∫ ·

0
𝜎(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝑣𝑠 +

√
Y

∫ ·

0
𝜎(𝑠, 𝑋 Y,𝑣Y𝑠 )𝑑𝐵𝐻𝑠

converges in distribution in 𝐶 ( [0, 1] : R𝑚) to

𝑥0 +
∫ ·

0
𝑏(𝑠, 𝑋𝑠)𝑑𝑠 +

∫ ·

0
𝜎(𝑠, 𝑋𝑠)𝑑𝑣𝑠 .

Since 𝑋 Y,𝑣Y converges to 𝑋 in distribution in𝐶 ( [0, 1] : R𝑚) and that the solution
to (53) is unique, we conclude that 𝑋 Y,𝑣Y = GY (

√
Y𝜔+𝑣Y) converges to 𝑋0,𝑣 = G0 (𝑣)

in distribution in 𝐶 ( [0, 1] : R𝑚). □

Proof of Theorem 2. Note that the rate function 𝐼 defined in (22) coincides with
the one in (16) for G0 defined in (55). From Theorem 1, to prove Theorem 2, it is
sufficient to verify the conditions in Assumption 1 for GY defined in Lemma 5 and
G0 in (55). Lemma 8 shows that the Assupmtion 1(i) is satisfied. Also, since 𝑆𝑁 is
compact in the weak topology, Lemma 7 implies that the set

Γ𝑁 = {G0 (𝑣) : 𝑣 ∈ 𝑆𝑁 }

is a compact subset of E, which verifies Assumption 1(ii). □
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